The Campylobacter jejuni NADH:ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH.

نویسندگان

  • Dilan R Weerakoon
  • Jonathan W Olson
چکیده

Campylobacter jejuni encodes 12 of the 14 subunits that make up the respiratory enzyme NADH:ubiquinone oxidoreductase (also called complex I). The two nuo genes not present in C. jejuni encode the NADH dehydrogenase, and in their place in the operon are the novel genes designated Cj1575c and Cj1574c. A series of mutants was generated in which each of the 12 nuo genes (homologues to known complex I subunits) was disrupted or deleted. Each of the nuo mutants will not grow in amino acid-based medium unless supplemented with an alternative respiratory substrate such as formate. Unlike the nuo genes, Cj1574c is an essential gene and could not be disrupted unless an intact copy of the gene was provided at an unrelated site on the chromosome. A nuo deletion mutant can efficiently respire formate but is deficient in alpha-ketoglutarate respiratory activity compared to the wild type. In C. jejuni, alpha-ketoglutarate respiration is mediated by the enzyme 2-oxoglutarate:acceptor oxidoreductase; mutagenesis of this enzyme abolishes alpha-ketoglutarate-dependent O2 uptake and fails to reduce the electron transport chain. The electron acceptor for 2-oxoglutarate:acceptor oxidoreductase was determined to be flavodoxin, which was also determined to be an essential protein in C. jejuni. A model is presented in which CJ1574 mediates electron flow into the respiratory transport chain from reduced flavodoxin and through complex I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism?

The modular evolutionary origin of NADH:ubiquinone oxidoreductase (complex I) provides useful insights into its functional organization. Iron-sulfur cluster N2 and the PSST and 49 kDa subunits were identified as key players in ubiquinone reduction and proton pumping. Structural studies indicate that this 'catalytic core' region of complex I is clearly separated from the membrane. Complex I from...

متن کامل

Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I)

Three-dimensional structures of NADH:ubiquinone oxidoreductase (or complex I) from the respiratory chain of mitochondria and bacteria have been recently studied by electron microscopy. The low-resolution structures all reveal a characteristic L shape for complex I; however, some of the differences among these structures may have important implications for the location of the functional elements...

متن کامل

Rapid Detection of Campylobacter jejuni by Polymerase Chain Reaction and Evaluation of its Sensitivity and Specificity

Introduction: Campylobacter jejuni is one of the most common causes of food poising in humans. Rapid and specific detection of these bacteria has an important role in diagnosis and treatment of infection. The aim of this study was to design a specific PCR for the detection of Campylobacter jejuni. Methods: In this experimental study, oxidoreductase gene from the Campylobacter jejuni was sele...

متن کامل

External alternative NADH:ubiquinone oxidoreductase redirected to the internal face of the mitochondrial inner membrane rescues complex I deficiency in Yarrowia lipolytica.

Alternative NADH:ubiquinone oxidoreductases are single subunit enzymes capable of transferring electrons from NADH to ubiquinone without contributing to the proton gradient across the respiratory membrane. The obligately aerobic yeast Yarrowia lipolytica has only one such enzyme, encoded by the NDH2 gene and located on the external face of the mitochondrial inner membrane. In sharp contrast to ...

متن کامل

The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport.

The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Recently, it was demonstrated that complex I from Klebsiella pneumoniae translocates sodium ions instead of protons. Experimental evidence suggested that complex I from the close relative Escherichia coli works as a primary sodium pump a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 3  شماره 

صفحات  -

تاریخ انتشار 2008